
Assignment 2: Triple Integrals: Solutions

1. (a) By Fubini’s theorem, we can evaluate the integral in any order we
want. Integrating z first, then y, then x:∫ 2

1

∫ 0

−1

∫ 3

0
x+ 2y + 4z dz dy dx

=
∫ 2

1

∫ 0

−1
(x+ 2y)z + 2z2|30 dy dx

=
∫ 2

1

∫ 0

−1
3x+ 6y + 18 dy dx

=
∫ 2

1
(3x+ 18)y + 3y2|0−1 dx

=
∫ 2

1
3x+ 18− 3 dx

=
3

2
x2 + 15x|21

= (6 + 30)− (
3

2
+ 15)

=
39

2

(b) ∫ 2

−1

∫ x2

1

∫ x+y

0
(2x2y) dz dy dx

=
∫ 2

−1

∫ x2

1
(2x2y)(x+ y) dy dx

=
∫ 2

−1

∫ x2

1
2x3y + 2x2y2 dy dx

=
∫ 2

−1
x3y2 +

2

3
x2y3|x2

1 dx

=
∫ 2

−1
x7 +

2

3
x8 − x3 − 2

3
x2 dx

=
x8

8
+

2x9

27
− x4

4
− 2x3

9
|2−1

= 25 +
210

27
− 4− 16

9
− 1

8
+

2

27
+

1

4
− 2

9

=
513

8

1



(c) First, we need to find boundary equations for E. In the xy-plane,
the solid is bounded by the lines x+y = 1, x = 0, y = 0. This can
be described as the region bounded by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x.

Above this, in the z plane, lies the plane which contains the points
(1,0,0), (0,1,0), and (0,0,2). By inspection, or by using the method
described in section 12.5 of the textbook, we can find that the
equation of this plane is x + y + z

2
= 1. Re-arranging for z gives

z = 2− 2x− 2y. Thus, our integral is∫ 1

0

∫ 1−x

0

∫ 2−2x−2y

0
(xy) dz dy dx

=
∫ 1

0

∫ 1−x

0
(xy)(2− 2x− 2y) dy dx

=
∫ 1

0

∫ 1−x

0
2xy − 2x2y − 2xy2 dy dx

=
∫ 1

0
xy2 − x2y2 − 2

3
xy3|1−x0 dx

=
∫ 1

0
x(1− x)2 − x2(1− x)2 − 2

3
x(1− x)3 dx

=
∫ 1

0
x(1− 2x+ x2)− x2(1− 2x+ x2)− 2

3
x(1− 3x+ 3x2 − x3) dx

=
∫ 1

0
x− 2x2 + x3 − x2 + 2x3 − x4 − 2

3
x+ 2x2 − 2x3 +

2

3
x4 dx

=
∫ 1

0
−1

3
x4 + x3 − x2 +

1

3
x dx

= − 1

15
x5 +

1

4
x4 − 1

3
x3 +

1

6
x2|10

= − 1

15
+

1

4
− 1

3
+

1

6

=
1

60

2. First, we need to determine the region E. In the xz plane, the projec-
tion of E is the intersection of the curves z = x2 and z = x3. Since
these curves intersect at x = 0 and x = 1, this region can be described
as 0 ≤ x ≤ 1, x3 ≤ z ≤ x2.
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Furthermore, the bounds for y are given by the equations y = z2 and
y = 0. Thus, the volume is given by

∫ 1

0

∫ x2

x3

∫ z2

0
1 dy dz dx

=
∫ 1

0

∫ x2

x3
z2 dy dx

=
∫ 1

0

z3

3
|x2

x3 dx

=
∫ 1

0

x6

3
− x9

3
dx

=
x7

21
− x10

30
|10

=
1

21
− 1

30

=
1

70

3. Again, we first need to determine the bounds of the solid. In the xz-
plane (below, we give the setup for projecting into the yz-plane), the
projection of the solid is given by the curves z+x2 = 4 and z = 0. These
intersect at x = ±2, so the bounds are −2 ≤ x ≤ 2 and 0 ≤ z ≤ 4−x2.

The bounds for y are given by y = 4− z, y = 0. Thus the total mass is

∫ 2

−2

∫ 4−x2

0

∫ 4−z

0
m(x, y, z) dy dz dx

But the mass is constantly 5, so m(x, y, z) = 5. Thus the above is

=
∫ 2

−2

∫ 4−x2

0

∫ 4−z

0
5 dy dz dx

= 5
∫ 2

−2

∫ 4−x2

0
4− z dz dx

= 5
∫ 2

−2
4z − z2

2
|4−x2

0 dx

= 5
∫ 2

−2
16− 4x2 − 8 + 4x2 − x4

2
dx

3



= 5
∫ 2

−2
8− x4

2
dx

= 5
(

16− 32

10

)
−
(
−16 +

32

10

)
= 128

Alternatively, one could consider the projection in the yz-plane. Here,
the curves are y + z = 4, y = 0, z = 0. This gives bounds 0 ≤ z ≤ 4
and 0 ≤ y ≤ 4 − z. The bounds for x are then given by re-arranging
z+x2 + 4 and solving for x: −

√
4− z ≤ x ≤

√
4− z, and so one could

also evaluate the integral∫ 4

0

∫ 4−z

0

∫ √4−z

−
√

4−z
5 dx dy dz

Evaluating this integral also gives 128.

4. Since the region is a hemisphere, this will be easiest to solve if we re-
write it in spherical co-ordinates. Since z ≥ 0, the hemisphere has
bounds 0 ≤ φ ≤ π

2
, 0 ≤ θ ≤ 2π, and 0 ≤ r ≤ 1. Since x2 +y2 + z2 = r2,

the integral reduces to∫ π
2

0

∫ 2π

0

∫ 1

0
(r)(r2 sinφ) dr dθ dφ

=
∫ π

2

0

∫ 2π

0

r4

4
sinφ|10 dθ dφ

=
∫ π

2

0

∫ 2π

0

sinφ

4
dθ dφ

=
∫ π

2

0

2π

4
sinφ dφ

=
π

2
(− cosφ)|

π
2
0

=
π

2
(0− (−1))

=
π

2

5. This is a straightforward calculation: the Jacobian reduces to

2(4)− 3(5)− 1(−1) = −6
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6. First, we need to solve the equations for x and y. After re-arranging
the equations, we find

x =
1

2
u+

1

2
v and y = −1

2
u+

1

2
v

The Jacobian of this transformation can be calculated as 1
2
.

Next, we need to change the bounds of the integral. Under the trans-
formation, the four points of the diamond change to the four points
(−1, 1), (−1, 3), (1, 3), (1, 1). Thus the new region is the rectangle −1 ≤
u ≤ 1, 1 ≤ v ≤ 3. Thus the integral becomes∫ 1

−1

∫ 3

1
u2 cos2 v

1

2
dv du

=
1

2

∫ 1

−1
u2
∫ 3

1

1 + cos(2v)

2
dv du

=
1

4

(
u3

3
|1−1 ·

(
sin(2v)

2
+ v

)
|31

)

=
1

4

(
2

3
·
(

sin 6

2
+ 3− sin 2

2
− 1

))
=

1

6

(
sin 6

2
− sin 2

2
+ 2

)
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